Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.
نویسندگان
چکیده
We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.
منابع مشابه
Generalized theory for nanoscale voltammetric measurements of heterogeneous electron-transfer kinetics at macroscopic substrates by scanning electrochemical microscopy.
Here we report on a generalized theory for scanning electrochemical microscopy to enable the voltammetric investigation of a heterogeneous electron-transfer (ET) reaction with arbitrary reversibility and mechanism at the macroscopic substrate. In this theory, we consider comprehensive nanoscale experimental conditions where a tip is positioned at a nanometer distance from a substrate to detect ...
متن کاملElectrochemical Investigation of Antibacterial Laser Dye Compound in 1,2-Dichloroethane at a Platinum Electrode
Diolefinic antibacterial laser dye namely 1,4-Bis[2-(4-Pyridyl) Vinyl] Benzene (4PVB)have been investigated electrochemically using cyclic voltammetry, chronoamperometry, convolution and deconvolution voltammetry combined with digital simulation techniques at a platinum electrode in 0.1 mol / L Tetra Butyl Ammonium Perchlorate (TBAP) in solvent 1,2-dichloroethane. The diolefinic ...
متن کاملMultistep Surface Electrode Mechanism Coupled with Preceding Chemical Reaction-Theoretical Analysis in Square-Wave Voltammetry
In this theoretical work, we present for the first time voltammetric results of a surface multistep electron transfer mechanism that is associated with a preceding chemical reaction that is linked to the first electron transfer step. The mathematical model of this so-called “surface CEE mechanism” is solved under conditions of square-wave voltammetry. We present relevant set of results portrayi...
متن کاملDetermination of the Kinetic Parameters for the Electroreduction of c 6 0 by Scanning Electrochemical Microscopy and Fast Scan Cyclic Voltammetry 20 1
The electroreduction of the fullerene Cm in 1,2-dichlorobenzene (ODCB) and benzonitrile (PhCN) at a Pt electrode was studied by using scanning electrochemical microscopy and fast scan cyclic voltammetry. The former technique was employed for steady-state measurements in a thin-layer cell formed by an ultramicroelectrode tip and mercury pool substrate. The standard heterogeneous rate constants f...
متن کاملBinder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries
Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 83 3 شماره
صفحات -
تاریخ انتشار 2011