Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.

نویسندگان

  • Nikoloz Nioradze
  • Jiyeon Kim
  • Shigeru Amemiya
چکیده

We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized theory for nanoscale voltammetric measurements of heterogeneous electron-transfer kinetics at macroscopic substrates by scanning electrochemical microscopy.

Here we report on a generalized theory for scanning electrochemical microscopy to enable the voltammetric investigation of a heterogeneous electron-transfer (ET) reaction with arbitrary reversibility and mechanism at the macroscopic substrate. In this theory, we consider comprehensive nanoscale experimental conditions where a tip is positioned at a nanometer distance from a substrate to detect ...

متن کامل

Electrochemical Investigation of Antibacterial Laser Dye Compound in 1,2-Dichloroethane at a Platinum Electrode

Diolefinic antibacterial laser dye namely 1,4-Bis[2-(4-Pyridyl) Vinyl] Benzene (4PVB)have been investigated electrochemically using cyclic voltammetry, chronoamperometry, convolution and deconvolution voltammetry combined with digital simulation techniques at a platinum electrode in 0.1 mol / L Tetra Butyl Ammonium Perchlorate (TBAP) in  solvent 1,2-dichloroethane.  The diolefinic ...

متن کامل

Multistep Surface Electrode Mechanism Coupled with Preceding Chemical Reaction-Theoretical Analysis in Square-Wave Voltammetry

In this theoretical work, we present for the first time voltammetric results of a surface multistep electron transfer mechanism that is associated with a preceding chemical reaction that is linked to the first electron transfer step. The mathematical model of this so-called “surface CEE mechanism” is solved under conditions of square-wave voltammetry. We present relevant set of results portrayi...

متن کامل

Determination of the Kinetic Parameters for the Electroreduction of c 6 0 by Scanning Electrochemical Microscopy and Fast Scan Cyclic Voltammetry 20 1

The electroreduction of the fullerene Cm in 1,2-dichlorobenzene (ODCB) and benzonitrile (PhCN) at a Pt electrode was studied by using scanning electrochemical microscopy and fast scan cyclic voltammetry. The former technique was employed for steady-state measurements in a thin-layer cell formed by an ultramicroelectrode tip and mercury pool substrate. The standard heterogeneous rate constants f...

متن کامل

Binder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries

Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 83 3  شماره 

صفحات  -

تاریخ انتشار 2011